本文最后更新于:14 天前
预处理数据:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/6 15:31
# @Author : Seven
# @Site :
# @File : Read_data.py
# @Software: PyCharm
# TODO: 加载数据
import pickle
import numpy as np
from sklearn.preprocessing import MinMaxScaler, LabelBinarizer
def load_cifar10_batch(path, batch_id):
"""
加载batch的数据
:param path: 数据存储的目录
:param batch_id:batch的编号
:return:features and labels
"""
with open(path + '/data_batch_' + str(batch_id), mode='rb') as file:
batch = pickle.load(file, encoding='latin1')
# features and labels
features = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
labels = batch['labels']
return features, labels
# 数据预处理
def pre_processing_data(x_train, y_train, x_test, y_test):
# features
minmax = MinMaxScaler()
# 重塑数据
# (50000, 32, 32, 3) --> (50000, 32*32*3)
x_train_rows = x_train.reshape(x_train.shape[0], 32*32*3)
# (10000, 32, 32, 3) --> (10000, 32*32*3)
x_test_rows = x_test.reshape(x_test.shape[0], 32*32*3)
# 归一化
x_train_norm = minmax.fit_transform(x_train_rows)
x_test_norm = minmax.fit_transform(x_test_rows)
# 重塑数据
x_train = x_train_norm.reshape(x_train_norm.shape[0], 32, 32, 3)
x_test = x_test_norm.reshape(x_test_norm.shape[0], 32, 32, 3)
# labels
# 对标签进行one-hot
n_class = 10
label_binarizer = LabelBinarizer().fit(np.array(range(n_class)))
y_train = label_binarizer.transform(y_train)
y_test = label_binarizer.transform(y_test)
return x_train, y_train, x_test, y_test
def cifar10_data():
# 加载训练数据
cifar10_path = 'data'
# 一共是有5个batch的训练数据
x_train, y_train = load_cifar10_batch(cifar10_path, 1)
for n in range(2, 6):
features, labels = load_cifar10_batch(cifar10_path, n)
x_train = np.concatenate([x_train, features])
y_train = np.concatenate([y_train, labels])
# 加载测试数据
with open(cifar10_path + '/test_batch', mode='rb') as file:
batch = pickle.load(file, encoding='latin1')
x_test = batch['data'].reshape((len(batch['data']), 3, 32, 32)).transpose(0, 2, 3, 1)
y_test = batch['labels']
x_train, y_train, x_test, y_test = pre_processing_data(x_train, y_train, x_test, y_test)
return x_train, y_train, x_test, y_test
配置文件:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/7 14:10
# @Author : Seven
# @Site :
# @File : config.py
# @Software: PyCharm
# TODO: 基本配置
nb_classes = 10
class_name = {
0: 'airplane',
1: 'automobile',
2: 'bird',
3: 'cat',
4: 'deer',
5: 'dog',
6: 'frog',
7: 'horse',
8: 'ship',
9: 'truck',
}
类VGG16Net网络:
def KerasVGG():
"""
模型采用类似于 VGG16 的结构:
使用固定尺寸的小卷积核 (3x3)
以2的幂次递增的卷积核数量 (64, 128, 256)
两层卷积搭配一层池化
全连接层没有采用 VGG16 庞大的三层结构,避免运算量过大,仅使用 128 个节点的单个FC
权重初始化采用He Normal
:return:
"""
name = 'VGG'
inputs = Input(shape=(32, 32, 3))
net = inputs
# (32, 32, 3)-->(32, 32, 64)
net = Convolution2D(filters=64, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (32, 32, 64)-->(32, 32, 64)
net = Convolution2D(filters=64, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (32, 32, 64)-->(16, 16, 64)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (16, 16, 64)-->(16, 16, 128)
net = Convolution2D(filters=128, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (16, 16, 64)-->(16, 16, 128)
net = Convolution2D(filters=128, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (16, 16, 128)-->(8, 8, 128)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (8, 8, 128)-->(8, 8, 256)
net = Convolution2D(filters=256, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (8, 8, 256)-->(8, 8, 256)
net = Convolution2D(filters=256, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
# (8, 8, 256)-->(4, 4, 256)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (4, 4, 256) --> 4*4*256=4096
net = Flatten()(net)
# 4096 --> 128
net = Dense(units=128, activation='relu',
kernel_initializer='he_normal')(net)
# Dropout
net = Dropout(0.5)(net)
# 128 --> 10
net = Dense(units=config.nb_classes, activation='softmax',
kernel_initializer='he_normal')(net)
return inputs, net, name
添加BN层:
def KerasBN():
"""
添加batch norm 层
:return:
"""
name = 'BN'
inputs = Input(shape=(32, 32, 3))
net = inputs
# (32, 32, 3)-->(32, 32, 64)
net = Convolution2D(filters=64, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (32, 32, 64)-->(32, 32, 64)
net = Convolution2D(filters=64, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (32, 32, 64)-->(16, 16, 64)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (16, 16, 64)-->(16, 16, 128)
net = Convolution2D(filters=128, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (16, 16, 64)-->(16, 16, 128)
net = Convolution2D(filters=128, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (16, 16, 128)-->(8, 8, 128)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (8, 8, 128)-->(8, 8, 256)
net = Convolution2D(filters=256, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (8, 8, 128)-->(8, 8, 256)
net = Convolution2D(filters=256, kernel_size=3, strides=1,
padding='same', activation='relu',
kernel_initializer='he_normal')(net)
net = BatchNormalization()(net)
net = Activation('relu')(net)
# (8, 8, 256)-->(4, 4, 256)
net = MaxPooling2D(pool_size=2, strides=2, padding='valid')(net)
# (4, 4, 256) --> 4*4*256=4096
net = Flatten()(net)
# 4096 --> 128
net = Dense(units=128, activation='relu',
kernel_initializer='he_normal')(net)
# Dropout
net = Dropout(0.5)(net)
# 128 --> 10
net = Dense(units=config.nb_classes, activation='softmax',
kernel_initializer='he_normal')(net)
return inputs, net, name
训练文件:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/7 14:07
# @Author : Seven
# @Site :
# @File : TrainModel.py
# @Software: PyCharm
# TODO: 模型训练
# TODO:导入环境
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
import time
def run(network, X_train, y_train, X_test, y_test, augmentation=False):
print('X_train shape:', X_train.shape)
print('Y_train shape:', y_train.shape)
print(X_train.shape[0], 'x_training samples')
print(X_test.shape[0], 'validation samples')
# TODO: 规一化处理
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
# TODO: 初始化模型
inputs, logits, name = network
model = Model(inputs=inputs, outputs=logits, name='model')
# TODO: 计算损失值并初始化optimizer
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
model.summary()
print('FUNCTION READY!!')
# TODO: 开始训练
print('TRAINING....')
epoch = 100
batch_size = 256
start = time.time()
# 数据增强
if augmentation:
aug_gen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False, # randomly flip images
)
aug_gen.fit(X_train)
generator = aug_gen.flow(X_train, y_train, batch_size=batch_size)
out = model.fit_generator(generator=generator,
steps_per_epoch=50000 // batch_size,
epochs=epoch,
validation_data=(X_test, y_test))
# TODO: 保存模型
model.save('CIFAR10_model_with_data_augmentation_%s.h5' % name)
# 不使用数据增强
else:
out = model.fit(x=X_train, y=y_train,
batch_size=batch_size,
epochs=epoch,
validation_data=(X_test, y_test),
shuffle=True)
# TODO: 保存模型
model.save('CIFAR10_model_no_data_augmentation_%s.h5' % name)
loss, accuracy = model.evaluate(X_train, y_train, verbose=0)
print("Training Accuracy = %.2f %% loss = %f" % (accuracy * 100, loss))
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
print("Testing Accuracy = %.2f %% loss = %f" % (accuracy * 100, loss))
print('@ Total Time Spent: %.2f seconds' % (time.time() - start))
return out, epoch, model
可视化数据:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/7 15:00
# @Author : Seven
# @Site :
# @File : visualization.py
# @Software: PyCharm
# TODO: 可视化数据
import matplotlib.pyplot as plt
import numpy as np
def plot_acc_loss(data, epoch):
"""
可视化数据
:param data: 数据
:param epoch: 迭代次数
:return:
"""
acc, loss, val_acc, val_loss = data.history['acc'], data.history['loss'], \
data.history['val_acc'], data.history['val_loss']
plt.figure(figsize=(15, 5))
plt.subplot(121)
plt.plot(range(epoch), acc, label='Train')
plt.plot(range(epoch), val_acc, label='Test')
plt.title('Accuracy over ' + str(epoch) + ' Epochs', size=15)
plt.legend()
plt.grid(True)
plt.subplot(122)
plt.plot(range(epoch), loss, label='Train')
plt.plot(range(epoch), val_loss, label='Test')
plt.title('Loss over ' + str(epoch) + ' Epochs', size=15)
plt.legend()
plt.grid(True)
plt.show()
def plot_image(x_test, y_test, class_name, model):
rand_id = np.random.choice(range(10000), size=10)
X_pred = np.array([x_test[i] for i in rand_id])
y_true = [y_test[i] for i in rand_id]
y_true = np.argmax(y_true, axis=1)
y_true = [class_name[name] for name in y_true]
y_pred = model.predict(X_pred)
y_pred = np.argmax(y_pred, axis=1)
y_pred = [class_name[name] for name in y_pred]
plt.figure(figsize=(15, 7))
for i in range(10):
plt.subplot(2, 5, i + 1)
plt.imshow(X_pred[i].reshape(32, 32, 3), cmap='gray')
plt.title('True: %s \n Pred: %s' % (y_true[i], y_pred[i]), size=15)
plt.show()
验证本地图片:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/7 19:18
# @Author : Seven
# @Site :
# @File : TestModel.py
# @Software: PyCharm
import numpy as np
from PIL import Image
from keras.models import load_model
import Read_data
import config
import visualization
def run():
# 加载模型
model = load_model('CIFAR10_model_with_data_augmentation_VGG.h5')
# 加载数据
X_train, y_train, X_test, y_test = Read_data.load_data()
visualization.plot_image(X_test, y_test, config.class_name, model)
def local_photos():
# input
im = Image.open('image/dog-1.jpg')
# im.show()
im = im.resize((32, 32))
# print(im.size, im.mode)
im = np.array(im).astype(np.float32)
im = np.reshape(im, [-1, 32*32*3])
im = (im - (255 / 2.0)) / 255
batch_xs = np.reshape(im, [-1, 32, 32, 3])
model = load_model('CIFAR10_model_with_data_augmentation_VGG.h5')
output = model.predict(batch_xs)
print(output)
print('the out put is :', config.class_name[np.argmax(output)])
if __name__ == '__main__':
local_photos()
输出:
[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]]
the out put is : dog
本博客所有文章除特别声明外,均采用 CC BY-SA 3.0协议 。转载请注明出处!