本文最后更新于:14 天前
示例代码:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/9/14 21:57
# @Author : Seven
# @Site :
# @File : ResNet.py
# @Software: PyCharm
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
growth = 1
def __init__(self, inputs, outs, stride=1):
super(BasicBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, outs, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outs)
)
self.shortcut = nn.Sequential()
if stride != 1 or inputs != outs:
self.shortcut = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outs)
)
def forward(self, inputs):
network = self.left(inputs)
network += self.shortcut(inputs)
out = F.relu(network)
return out
class UpgradeBlock(nn.Module):
growth = 4
def __init__(self, inputs, outs, stride=1):
super(UpgradeBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inputs, outs, kernel_size=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, outs, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outs),
nn.ReLU(),
nn.Conv2d(outs, self.growth*outs, kernel_size=1, bias=False),
nn.BatchNorm2d(self.growth*outs)
)
self.shortcut = nn.Sequential()
if stride != 1 or inputs != self.growth * outs:
self.shortcut = nn.Sequential(
nn.Conv2d(inputs, self.growth * outs, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.growth * outs)
)
def forward(self, inputs):
network = self.left(inputs)
network += self.shortcut(inputs)
out = F.relu(network)
return out
class ResNet(nn.Module):
def __init__(self, block, layers):
super(ResNet, self).__init__()
self.inputs = 64
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, stride=1, bias=False),
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU()
)
self.conv2 = self._block(block, layers=layers[0], channels=64, stride=1)
self.conv3 = self._block(block, layers=layers[1], channels=128, stride=2)
self.conv4 = self._block(block, layers=layers[2], channels=256, stride=2)
self.conv5 = self._block(block, layers=layers[3], channels=512, stride=2)
self.linear = nn.Linear(512*block.growth, 10)
def forward(self, inputs):
network = self.conv1(inputs)
network = self.conv2(network)
network = self.conv3(network)
network = self.conv4(network)
network = self.conv5(network)
network = F.avg_pool2d(network, kernel_size=network.shape[2])
network = network.view(network.size(0), -1)
out = self.linear(network)
return out, network
def _block(self, block, layers, channels, stride):
strides = [stride] + [1] * (layers - 1) # strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inputs, channels, stride))
self.inputs = channels*block.growth
return nn.Sequential(*layers)
def ResNet18():
return ResNet(block=BasicBlock, layers=[2, 2, 2, 2])
def ResNet34():
return ResNet(block=BasicBlock, layers=[3, 4, 6, 3])
def ResNet50():
return ResNet(UpgradeBlock, [3, 4, 6, 3])
def ResNet101():
return ResNet(UpgradeBlock, [3, 4, 23, 3])
def ResNet152():
return ResNet(UpgradeBlock, [3, 8, 36, 3])
本博客所有文章除特别声明外,均采用 CC BY-SA 3.0协议 。转载请注明出处!