本文最后更新于:14 天前
反向传播(back propagation)算法推导
定义损失函数:
$E_{total}=\frac12 (y-outo)^2$
定义激活函数:
$\sigma(x)=sigmod(x) $
前向传播
第一层(输入层):
加权和:
第二层(隐层):
加权和:
第三层(输出层):
计算误差值:
总结
:要是使误差值最小,就需要误差反向传播算法
,更新得到最小误差的权重参数w和b
。
反向传播
须知
:我们需要反向传递回去更新每一层对应的权重参数w和b
。我们使用链式法则
来反向模式求导
。
更新第三层(输出层)的权重参数:
更新参数w
:
$\frac{\partial E_{total}}{\partial w_3}=\frac{\partial E_{total}}{\partial outo_1} \cdot \frac{\partial outo_1}{\partial neto_1} \cdot \frac{\partial neto_1}{\partial w_3}$
$= \frac{\partial \frac12(y_1-outo_1)^2}{\partial outo_1} \cdot \frac{\partial sigmod(neto_1)}{\partial neto_1} \cdot \frac{\partial neto_1}{\partial w_3}$
$=(outo_1-y_1)\cdot outo_1(1-outo_1)\cdot outh_1$
$w_{3new}=w_{3old}-\eta \frac{\partial E_{total}}{\partial w_3}$, $\eta$是学习率
更新参数b
:
$\frac{\partial E_{total}}{\partial b_2}=\frac{\partial E_{total}}{\partial outo_1} \cdot \frac{\partial outo_1}{\partial neto_1} \cdot \frac{\partial neto_1}{\partial b_2}$
$= \frac{\partial \frac12(y_1-outo_1)^2}{\partial outo_1} \cdot \frac{\partial sigmod(neto_1)}{\partial neto_1} \cdot \frac{\partial neto_1}{\partial b_2}$
$=(outo_1-y_1)\cdot outo_1(1-outo_1)$
$b_{2new}=b_{2old}-\eta \frac{\partial E_{total}}{\partial b_2}$, $\eta$是学习率
同理可得:w4
:也就是同一层的w
都可以用这种方式更新。
更新上一层(隐层)的权重参数:
更新权重参数w和b
:
$\frac{\partial E_{total}}{\partial w_1}=\frac{\partial E_{total}}{\partial outh_1} \cdot \frac{\partial outh_1}{\partial neth_1} \cdot \frac{\partial neth_1}{\partial w_1}$
$\frac{\partial E_{total}}{\partial b_1}=\frac{\partial E_{total}}{\partial outh_1} \cdot \frac{\partial outh_1}{\partial neth_1} \cdot \frac{\partial neth_1}{\partial b_1}$
其中:
$\frac{\partial E_{total}}{\partial outh_1} = \frac{\partial Eo_1}{\partial outh_1}+ \frac{\partial Eo_2}{\partial outh_1}$
$\frac{\partial Eo_1}{\partial outh_1} = \frac{\partial Eo_1}{\partial neto_1} \cdot \frac{\partial neto_1}{\partial outh_1}$
$ \frac{\partial Eo_1}{\partial neto_1} = \frac{\partial E_{o_1}}{\partial outo_1} \cdot \frac{\partial outo_1}{\partial neto_1} = (outo_1-y_1)\cdot outo_1(1-outo_1)$
$ \frac{\partial neto_1}{\partial outh_1} = \frac{\partial (outh_1w_3+outo_2w_4+b_2)}{\partial outh_1} = w_3$
同理可得:
$\frac{\partial Eo_2}{\partial outh_1} = \frac{\partial Eo_2}{\partial neto_2} \cdot \frac{\partial neto_2}{\partial outh_1}$
$ \frac{\partial Eo_2}{\partial neto_2} = \frac{\partial E_{o_2}}{\partial outo_2} \cdot \frac{\partial outo_2}{\partial neto_2} = (outo_2-y_2)\cdot outo_2(1-outo_2)$
$ \frac{\partial neto_2}{\partial outh_1} = w_5$ (outh1连接outo2的权重,暂定为w5,大家注意理解)
综合上式:
$\frac{\partial E_{total}}{\partial w_1}= [w_3 (outo_1-y_1)\cdot outo_1(1-outo_1) + w_5(outo_2-y_2)\cdot outo_2(1-outo_2)] \cdot outh_1(1-outh_1) \cdot x_1$
$\frac{\partial E_{total}}{\partial b_1}= [w_3 (outo_1-y_1)\cdot outo_1(1-outo_1) +w_5(outo_2-y_2)\cdot outo_2(1-outo_2)] \cdot outh_1(1-outh_1) $
更新:
$w_{1new}=w_{1old}-\eta \frac{\partial E_{total}}{\partial w_1}$
$b_{1new}=b_{1old}-\eta \frac{\partial E_{total}}{\partial b_1}$
同理可得:w2
:也就是同一层的w
都可以用这种方式更新。
至此,我们所有的参数都更新完毕了,然后我们可以再次用新的参数进行前向传播,得到的误差就会是最小的
推广:
我们定义第L
层的第i
个神经元更新权重参数时(上标表示层数,下标表示神经元):
$\frac{\partial E_{total}}{\partial net_i^{(L)}} = \delta_i^{(L)}$
$\frac{\partial E_{total}}{\partial w_{ij}^{(l)}}=outh_j^{(l-1)}\delta_i^{(l)}$ ,其中$w_{ij}^{(l)}$表示第$l$层的第$i$个神经元连接第$l-1$层的第$j$的神经元的相连的权重参数
w
。如下图所示:
推广总结:
根据前面我们所定义的:
$E_{total}=\frac12 (y-outo)^2$
$\sigma(x)=sigmod(x) $
$\frac{\partial E_{total}}{\partial w_{ij}^{(l)}}=outh_j^{(l-1)}\delta_i^{(l)}$
$\delta_i^{(L)}=\frac{\partial E_{total}}{\partial net_i^{(L)}} $
$= \frac{\partial E_{total}}{\partial outh_i} \cdot \frac{\partial outh_i}{\partial net_i^{(L)}}$
$= \bigtriangledown_{out} E_{total} \times \sigma^{\prime}(net_i^{(L)})$
对于第$l$层:
$\delta^{(l)}=\frac{\partial E_{total}}{\partial net^{(l)}} $
$= \frac{\partial E_{total}}{\partial net^{(l+1)}} \cdot \frac{\partial net^{(l+1)}}{\partial net^{(l)}}$
$= \delta^{(l+1)} \times \frac{\partial net^{(l+1)}}{\partial net^{(l)}}$
$= \delta^{(l+1)} \times \frac{\partial (w^{(l+1)}\sigma (net^{(l)}))}{\partial net^{(l)}}$
$= \delta^{(l+1)} w^{(l+1)} \sigma^{\prime}(net^{(L)})$
对于偏置项bias
:
$\frac{\partial E_{total}}{\partial bias_i^{(l)}}=\delta_i^{(l)}$
反向传播的四项基本原则:
基本形式:
$\delta_i^{(L)}= \bigtriangledown_{out} E_{total} \times \sigma^{\prime}(net_i^{(L)}) $
$\delta^{(l)} = \sum_j \delta_j^{(l+1)} w_{ji}^{(l+1)} \sigma^{\prime}(net_i^{(l)})$
$\frac{\partial E_{total}}{\partial bias_i^{(l)}}=\delta_i^{(l)}$
$\frac{\partial E_{total}}{\partial w_{ij}^{(l)}}=outh_j^{(l-1)}\delta_i^{(l)}$
矩阵形式:
$\delta_i^{(L)}= \bigtriangledown_{out} E_{total} \bigodot \sigma^{\prime}(net_i^{(L)}) $ , $\bigodot$是Hadamard乘积(对应位置相乘)
$\delta^{(l)} = (w^{(l+1)})^T \delta^{(l+1)} \bigodot \sigma^{\prime}(net^{(l)})$
$\frac{\partial E_{total}}{\partial bias^{(l)}}=\delta^{(l)}$
$\frac{\partial E_{total}}{\partial w^{(l)}}=\delta^{(l)}(outh^{(l-1)})^T$
当然如果你对具体推导不是很明白,你把这四项基本原则搞清楚,就可以直接使用了。
举个栗子
因为:$\delta_i^{(L)}= \bigtriangledown_{out} E_{total} \bigodot \sigma^{\prime}(net_i^{(L)}) $
所以:
$\delta^{(2)}= (out-y)\bigodot out(1-out)$
$=(\begin{bmatrix} 0.88134 \\ 0.89551 \end{bmatrix} -\begin{bmatrix} 1 \\ 0 \end{bmatrix}) \bigodot (\begin{bmatrix} 0.88134 \\ 0.89551 \end{bmatrix} \bigodot (\begin{bmatrix} 1 \\ 1 \end{bmatrix}-\begin{bmatrix} 0.88134 \\ 0.89551 \end{bmatrix})) $
$=\begin{bmatrix} -0.01240932\\ 0.08379177\end{bmatrix}$
因为:$\delta^{(l)} = (w^{(l+1)})^T \delta^{(l+1)} \bigodot \sigma^{\prime}(net^{(l)})$
所以:
$\delta^{(1)} = (w^{(2)})^T \delta^{(2)} \bigodot \sigma^{\prime}(net^{(1)})$
$=(\begin{bmatrix} 0.6 & 0.8 \\ 0.7 & 0.9\end{bmatrix}^T \cdot \begin{bmatrix} -0.01240932\\ 0.08379177\end{bmatrix}) \bigodot \begin{bmatrix} 0.20977282 \\ 0.19661193\end{bmatrix}$
$=\begin{bmatrix} 0.01074218\\ 0.01287516\end{bmatrix}$
因为:$\frac{\partial E_{total}}{\partial w^{(l)}}=\delta^{(l)}(outh^{(l-1)})^T$
所以:
$\Delta w^{(2)} = \delta^{(2)}(outh^{(1)})^T$
$=\begin{bmatrix} -0.01240932\\ 0.08379177\end{bmatrix} \cdot \begin{bmatrix} 0.70056714\\ 0.73105858 \end{bmatrix}^T$
$= \begin{bmatrix} -0.00869356 & -0.00907194 \\ 0.5870176 & 0.612567 \end{bmatrix}$
$\Delta w^{(1)} = \delta^{(1)}x^T$
$=\begin{bmatrix} 0.01074218\\ 0.01287516\end{bmatrix} \cdot \begin{bmatrix} 0.5\\ 1\end{bmatrix}^T$
$= \begin{bmatrix} 0.00537109& 0.01074218\\ 0.00643758 & 0.01287516 \end{bmatrix}$
权重更新
$w_{new}^2 = w_{old}^2-\Delta w^{(2)}$
$= {\begin{bmatrix} 0.6 & 0.8 \\ 0.7 & 0.9\end{bmatrix}}-\begin{bmatrix} -0.00869356 & 0.00907194 \\ 0.5870176 & 0.612567 \end{bmatrix}$
$= \begin{bmatrix} 0.60869356 & 0.80907194 \\ 0.64129824& 0.8387433 \end{bmatrix}$
$b_{new}^2=b_{old}^2-\Delta b^2$
$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}-\begin{bmatrix} -0.01240932\\ 0.08379177\end{bmatrix}$
$=\begin{bmatrix} 1.01240932\\ 0.91620823\end{bmatrix}$
$w_{new}^1= w_{old}^1-\Delta w^{(1)}$
$=\begin{bmatrix} 0.1 & 0.3 \\ 0.2 & 0.4\end{bmatrix} - \begin{bmatrix} 0.00537109& 0.01074218\\ 0.00643758 & 0.01287516 \end{bmatrix}$
$= \begin{bmatrix} 0.09462891& 0.28925782\\ 0.19356242& 0.38712484\end{bmatrix}$
$b_{new}^1=b_{old}^1-\Delta b^1$
$=\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} - \begin{bmatrix} 0.01074218\\ 0.01287516\end{bmatrix}$
$=\begin{bmatrix} 0.48925782\\ 0.48712484\end{bmatrix}$
就这样,我们就完成了一个简单神经网络的误差反向传播进行权重参数更新
权重初始化
本博客所有文章除特别声明外,均采用 CC BY-SA 3.0协议 。转载请注明出处!